
Collaborative Filtering Recommender Systems

J. Ben Schafer, Dan Frankowski, Jon Herlocker, and Shilad Sen

Department of Computer Science
University of Northern Iowa
Cedar Falls, IA 50614-0507

schafer@cs.uni.edu

Department of Computer Science
University of Minnesota
4-192 EE/CS Building

200 Union St. SE
Minneapolis, MN 55455

{dfrankow , ssen } @ cs.umn.edu

School of Electrical Engineering and Computer Science
Oregon State University

102 Dearborn Hall
Corvallis, OR 97331

herlock@eecs.oregonstate.edu

Abstract. One of the potent personalization technologies powering the
adaptive web is collaborative filtering. Collaborative filtering (CF) is the
process of filtering or evaluating items through the opinions of other people. CF
technology brings together the opinions of large interconnected communities on
the web, supporting filtering of substantial quantities of data. In this chapter we
introduce the core concepts of collaborative filtering, its primary uses for users
of the adaptive web, the theory and practice of CF algorithms, and design
decisions regarding design of rating systems and acquisition of ratings. We
also discuss how to evaluate CF systems, and the evolution of rich interaction
interfaces. We close the chapter with discussions of the challenges of privacy
particular to a CF recommendation service and important open research
questions in the field.

1 Introduction

Collaborative Filtering is the process of filtering or evaluating items using the
opinions of other people. While the term collaborative filtering (CF) has only been
around for a little more than a decade, CF takes its roots from something humans have
been doing for centuries - sharing opinions with others.

For years, people have stood over the back fence or in the office break room and
discussed books they have read, restaurants they have tried, and movies they have
seen – then used these discussions to form opinions. For example, when enough of
Amy’s colleagues say they liked the latest release from Hollywood, she might decide

2 J. Ben Schafer, Dan Frankowski, Jon Herlocker, and Shilad Sen

that she also should see it. Similarly, if many of them found it a disaster, she might
decide to spend her money elsewhere. Better yet, Amy might observe that Matt
recommends the types of films that she finds enjoyable, Paul has a history of
recommending films that she despises, and Margaret just seems to recommend
everything. Over time, she learns whose opinions she should listen to and how these
opinions can be applied to help her determine the quality of an item.

Computers and the web allow us to advance beyond simple word-of-mouth.
Instead of limiting ourselves to tens or hundreds of individuals the Internet allows us
to consider the opinions of thousands. The speed of computers allows us to process
these opinions in real time and determine not only what a much larger community
thinks of an item, but also develop a truly personalized view of that item using the
opinions most appropriate for a given user or group of users.

1.1 Core Concepts

While this chapter considers a variety of CF systems, we introduce the topic

through MovieLens1. MovieLens is a collaborative filtering system for movies. A
user of MovieLens rates movies using 1 to 5 stars, where 1 is “Awful” and 5 is “Must
See”. MovieLens then uses the ratings of the community to recommend other movies
that user might be interested in (), predict what that user might rate a movie,
or perform other tasks.

Figure 1

Figure 1: MovieLens uses collaborative filtering to predict that this user is likely
to rate the movie “Holes” 4 out of 5 stars.

1 http://www.movielens.org/

Collaborative Filtering Recommender Systems 3

To be more formal, a rating consists of the association of two things – user and
item. One way to visualize ratings is as a matrix (). Without loss of generality,
a ratings matrix consists of a table where each row represents a user, each column
represents a specific movie, and the number at the intersection of a row and a column
represents the user’s rating value. The absence of a rating score at this intersection
indicates that that user has not yet rated the item.

Table 1

Table 1: A MovieLens ratings matrix. Amy rated the movie Sideways a 5. Matt has not seen
The Matrix.

 The Matrix Speed Sideways Brokeback
Mountain

Amy 1 2 5
Matt 3 5 4
Paul 5 5 2 1
Cliff 5 5 5 5

The term user refers to any individual who provides ratings to a system. Most

often, we use this term to refer to the people using a system to receive information
(e.g., recommendations) although it also refers to those who provided the data
(ratings) used in generating this information.

CF systems determine the quality of items. Items can consist of anything for which
a human can provide a rating, such as art, books, CDs, journal articles, or vacation
destinations.

Ratings in a collaborative filtering system can take on a variety of forms.
• Scalar ratings can consist of either numerical ratings, such as the 1-5

stars provided in MovieLens or ordinal ratings such as strongly agree,
agree, neutral, disagree, strongly disagree.

• Binary ratings model choices between agree/disagree or good/bad.
• Unary ratings can indicate that a user has observed or purchased an item,

or otherwise rated the item positively. The absence of a rating indicates
that we have no information relating the user to the item (perhaps they
purchased the item somewhere else).

Ratings may be gathered through explicit means, implicit means, or both. Explicit

ratings are those where a user is asked to provide an opinion on an item. Implicit
ratings are those inferred from a user’s actions. For example, a user who visits a
product page perhaps has some interest in that product while a user who subsequently
purchases the product may have a much stronger interest in that product. The issues of
design decisions and tradeoffs regarding collection of different types of ratings are
discussed in Section 4.

4 J. Ben Schafer, Dan Frankowski, Jon Herlocker, and Shilad Sen

1.2 The Beginning of Collaborative Filtering

As a formal area of research, collaborative filtering got its start as a means to
handle the shifting nature of text repositories. As content bases grew from mostly
"official" content, such as libraries and corporate document sets, to "informal" content
such as discussion lists and e-mail archives, the challenge of finding quality items
shifted as well. Pure content-based techniques were often inadequate at helping users
find the documents they wanted. Keyword-based representations could do an
adequate job of describing the topic of documents, but could do little to help users
understand the nature or quality of those documents. Hence, a keyword search for
“Chicago Rocks” might yield not only scholarly articles by the Chicago Rocks and
Minerals Society but also the “shallower” posting to a music bulletin board regarding
the 1970s rock band.

In the early 1990s there seemed to be two possible solutions to this new challenge:

1. wait for improvements in artificial intelligence that would allow better automated
classification of documents, or

2. bring human judgment into the loop.

While the challenges of automated classification have yet to be overcome, human
judgment has proved valuable and relatively easy to incorporate into semi-automated
systems2.

The Tapestry system, developed at Xerox PARC, took the first step in this
direction by incorporating user actions and opinions into a message database and
search system [17]. Tapestry stored the contents of messages, along with metadata
about authors, readers, and responders. It also allowed any user to store annotations
about messages, such as "useful survey" or "Phil should see this!" Tapestry users
could form queries that combined basic textual information (e.g. contains the phrase
"recommender systems") with semantic metadata queries (e.g. written by John OR
replied to by Joe) and annotation queries (e.g. marked as "excellent" by Chris). This
model has become known as pull-active collaborative filtering, because it is the
responsibility of the user who desires recommendations to actively pull the
recommendations out of the database.

Soon after the emergence of Tapestry, other researchers began to recognize the
potential for exploiting the human "information hubs" that seem to naturally occur
within organizations. Maltz and Ehrlich [37] developed a push-active collaborative
filtering recommender system that made it easy for a person reading a document to
push that document on to others in the organization who should see it. This type of
push-recommender role has become popular, with many people today serving as "joke
hubs" who receive jokes from all over and forward them to those they believe would
appreciate them (though often with far less discriminating thought than was
envisioned).

A limitation of active collaborative filtering systems is that they require a
community of people who know each other. Pull-active systems require that the user

2 For a slightly more broad discussion on the differences between collaborative filtering and

content filtering, see Section 2.4 of this chapter.

Collaborative Filtering Recommender Systems 5

know whose opinions to trust; push-active systems require that the user know to
whom particular content may be interesting. Automated collaborative filtering (ACF)
systems relieve users of this burden by using a database of historical user opinions to
automatically match each individual to others with similar opinions.

The early ACF systems included GroupLens [46,30] in the domain of Usenet
newsgroup articles, Ringo [52] in the domain of music and musical artists, and
Bellcore’s Video Recommender [24] in the domain of movies. While a more formal
discussion of recommendation algorithms follows in Section 3, each of these systems
follow a process of gathering ratings from users, computing the correlations between
pairs of users to identify a user’s “neighbors” in taste space, and combining the
ratings of those neighbors to make recommendations. GroupLens used a very explicit
interface where ratings of Usenet newsgroup articles were entered manually by
keystroke or button, and ratings were displayed numerically or graphically ().
Taking this a step further, both Ringo and Video Recommender were accessible
through the web and email and provided simple features for community interaction.

Figure 2

Figure 2: A modified Xrn news reader. The GroupLens project added article
predictions (lines of ### on the top right) and article rating buttons (bottom).

6 J. Ben Schafer, Dan Frankowski, Jon Herlocker, and Shilad Sen

1.3 Collaborative Filtering and the Adaptive Web

These early collaborative filtering systems were designed to explicitly provide
users with information about items. That is, users visited a website for the purpose of
receiving recommendations from the CF system. Later, websites began to use CF
systems behind the scenes to adapt their content to users, such as choosing which
news articles a website should be presenting prominently to a user.

Providers of information on the web must deal with limited user attention and
limited screen space. Collaborative filtering can predict what information users are
likely to want to see, enabling providers to select subsets of information to display in
the limited screen space. By placing that information prominently, it enables the user
to maximize their limited attention. In this way, collaborative filtering enables the
web to adapt to each individual user’s needs.

The remainder of this chapter will discuss collaborative filtering in more depth by
considering:
• The tasks for which users might use a CF system, things a CF system is good at,

and the kinds of domains for which CF is appropriate (Section 2)
• Algorithms that CF systems employ (Section 3)
• How types of ratings in a CF system affect design choices (Section 4)
• How to evaluate and compare recommenders (Section 5)
• Trends in the development of more interactive and explicitly social interfaces

(Section 6)
• The challenges to privacy and trust within CF systems (Section 7)
• Open questions in the continuing development of CF systems (Section 8)

2 Uses For Collaborative Filtering

Thus far, we have only briefly introduced collaborative filtering systems.
However, we may have still left readers asking the question “for what purposes is CF
appropriate?” In this section we consider this question by exploring user tasks that
CF supports, then the services that CF systems provide, and finally, contrasting CF
with content filtering, a technique that supports many of the same tasks, but using
different technology. Throughout, we explore both well-understood technologies, and
thought-provoking proposals that are not as well understood.

2.1 User Tasks

Designers of adaptive websites should carefully identify the possible tasks users
may wish to accomplish with their site as different tasks may require different design
decisions. From a marketing perspective, this is the value added by the CF system. In
this section, we consider user tasks for which collaborative filtering is useful.

Tasks for which people use collaborative filtering that have been studied include:

Collaborative Filtering Recommender Systems 7

1. Help me find new items I might like. In a world of information overload, I cannot
evaluate all things. Present a few for me to choose from. This has been applied
most commonly to consumer items (music, books, movies), but may also be
applied to research papers, web pages, or other ratable items.

2. Advise me on a particular item. I have a particular item in mind; does the
community know whether it is good or bad?

3. Help me find a user (or some users) I might like. Sometimes, knowing who to
focus on is as important as knowing what to focus on. This might help with
forming discussion groups [34], matchmaking, or connecting users so that they can
exchange recommendations socially.

4. Help our group find something new that we might like. CF can help groups of
people find items that maximize value to group as a whole [41]. For example, a
couple that wishes to see a movie together or a research group that wishes to read
an appropriate paper.

5. Domain-specific tasks. For example, a research paper recommender [55] might
also wish to support

a) recommend papers that this paper should cite
b) recommend papers that should cite this paper

Moreover, there are likely many tasks that are still undiscovered. Others are not yet

well documented in the research literature, although they could be supported by the
ratings data that collaborative filtering often has available. For example:

6. Help me find an item, new or not. For example, I might wish a “balanced diet” of

restaurants, including ones I’ve gone to before; or, I might wish to go to a
restaurant with a group of people, even if some have already been there; or, I might
wish to purchase some groceries that are appropriate for my shopping cart, even if
I’ve already bought them before.

7. Domain-specific tasks. For example, a recommender for a movie and a restaurant
for 1) a first date versus 2) a guys’ night out.

Note that “domain-specific tasks” are on both lists. Recommenders for some

domain-specific tasks have been explored; many have not. To date, much research has
focused on more abstract tasks (like “find new items”) while not probing deeply into
the underlying user goals (like “find a movie for a first date”).

2.2 Collaborative Filtering System Functionality

There are also broad abstract families of tasks that CF systems support. It is no
accident that this system functionality is related to the user tasks of the previous
section. Ideally, the system would support all user tasks, although mapping a real
application to the functionality of an actual CF system can be challenging. In any
case, here are the broad families of common CF system functionality:

1. Recommend items. Show a list of items to a user, in order of how useful they

might be. Often this is described as predicting what the user would rate the item,

8 J. Ben Schafer, Dan Frankowski, Jon Herlocker, and Shilad Sen

then ranking the items by this predicted rating. However, some successful
recommendation algorithms do not compute predicted rating values at all. For
example, Amazon’s recommendation algorithm aggregates items similar to a user’s
purchases and ratings without ever computing a predicted rating [33]. Instead of
displaying a personalized predicted rating, their user interface displays the average
customer rating. As a result, the recommendation list may appear out of order with
respect to the displayed average rating value. In many applications, picking the top
few items well is crucial; producing predicted values is secondary.

2. Predict for a given item. Given a particular item, calculate its predicted rating.
Note that prediction can be more demanding than recommendation. To recommend
items, a system only needs to be prepared to offer a few alternatives, but not all.
Some algorithms take advantage of this to be more scalable by saving memory and
computation time [33, 47]. To provide predictions for a particular item, a system
must be prepared to say something about any requested item, even rarely rated
ones. How does a system decide how a particular user would rate a requested item
if very few users – let alone users similar to the particular user – have rated the
item? Personalized predictions may be challenging, if not impossible.

3. Constrained recommendations: Recommend from a set of items. Given a
particular set or a constraint that gives a set of items, recommend from within that
set. For example:

“Consider the following scenario. Mary's 8-year-old nephew is visiting
for the weekend, and she would like to take him to the movies. She
would like a comedy or family movie rated no "higher" than PG-13.
She would prefer that the movie contain no sex, violence or offensive
language, last less than two hours and, if possible, show at a theater in
her neighborhood. Finally, she would like to select a movie that she
herself might enjoy.” [50]

Schafer et al. [50] propose a “meta-recommendation system” that generates
recommendations from a blending of multiple recommendation sources.
Users define preferences and requirements through a web form that restricts
the set of potential candidate items. Recommendations are based on a
ranking of how well the items within this set match the provided preferences.
Adomavicius et al. [1] call this “flexibility,” and propose a SQL-like
language as a desired extension in a “next-generation” recommendation
system. Such a system might accept queries such as “RECOMMEND Movie
TO User BASED ON Rating FROM MovieRecommender WHERE
Movie.Length < 120 AND Movie.Rating < 3 AND User.City =
Movie.Location.” Similar techniques are discussed in Chapter AT7 [53].

2.3 Suitable domains for collaborative filtering

One might simply take a user application, implement it with a CF system, and hope
it will work. However, CF is better known to be effective in domains with certain
properties. It seems useful to acquaint ourselves with them, and consider whether the

Collaborative Filtering Recommender Systems 9

user application is a good fit. We group these properties below into data distribution,
underlying meaning, and data persistence.

Note that with special consideration, CF can be successfully applied in domains
that do not have some of the properties below. We simply list them to provoke
thought and discussion about what domains are easy or hard with collaborative
filtering.

Data distribution. These properties are about the numbers and shape of the data:
1. There are many items. If there are only a few items to choose from, the user can

learn about them all without need for computer support.
2. There are many ratings per item. If there are only a few ratings per item, there

may not be enough information to provide useful predictions or recommendations.
3. There are more users rating than items to be recommended. A corollary of the

previous paragraph is that often you’ll need more users than the number of items
that you want to be able to capably recommend. More precisely, if there are few
ratings per user, you’ll need many users. Lots of systems are like this. For example,
this makes web pages a challenging domain, especially if the system requires
explicit ratings. Google3, a popular search engine, claims to index 8 billion web
pages at present, which is more than the number of people in the world, not to
mention the number who have access to computers. As another example, with one
million users, a CF system might be able to make recommendations for a hundred
thousand items, but may only be able to make confident predictions for ten
thousand or fewer, depending on the distribution of ratings across items. The
ratings distribution is almost always very skewed: a few items get most of the
ratings, a long tail of items that get few ratings. Items in this long tail will not be
confidently predictable.

4. Users rate multiple items. If a user rates only a single item, this provides some
information for summary statistics, but no information for relating the items to
each other.

Underlying meaning. These properties are of the underlying meaning of the data:
1. For each user of the community, there are other users with common needs or

tastes. CF works because people have needs or tastes in common. If a person has
tastes so unique that they are not shared by anybody else, then CF cannot provide
any value. More generally, CF works better when each user can find many other
users who share their tastes in some fashion.

2. Item evaluation requires personal taste. In cases where there are objective
criteria for goodness that can be automatically computed, those criteria may be
better applied by means other than collaborative filtering, e.g., search algorithms.
Collaborative filtering allows users with similar tastes to inform each other. CF
adds substantial value when evaluation of items is largely subjective (e.g., music),
or when those items have many different objective criteria that need to be
subjectively weighed against each other (e.g., cars). Sometimes there are objective
criteria that can help (e.g., only recommend books written in English), but if

3 http://www.google.com/

10 J. Ben Schafer, Dan Frankowski, Jon Herlocker, and Shilad Sen

recommendation can be performed using only objective criteria, then CF is not
useful.

3. Items are homogenous. That is to say, by all objective consumption criteria they
are similar, and they differ only in subjective criteria. Music albums are like this.
Most are similarly priced, similar to buy, of a similar length. Books or research
papers are also like this. Items sold at a department store are not like this: some are
cheap, some very expensive. For example, if you buy a hammer, perhaps you
should not be recommended a refrigerator.

Data persistence. These are properties of how long the data is relevant:
1. Items persist. Not only does a CF system need a single item to be rated by many

people, but also requires that people share multiple rated items – that there is
overlap in the items they rate. If I’ve rated item A and I want a prediction for item
B, most CF algorithms require multiple users to have rated both A and B. If I’ve
rated item A and I want recommendations, most CF algorithms require that
multiple users have rated A and some other items. All of this means that if items
are only important for a short time, these requirements are hard to meet. For
example, news stories: many appear per day, and many probably are only
interesting for a few days.

2. Taste persists. CF has been most successful in domains where users’ tastes don’t
change rapidly: e.g., movies, books, and consumer electronics. If tastes change
frequently or rapidly, then older ratings may be less useful. An example might be
clothing, where someone’s taste from five years ago may not be relevant.

The properties of the preceding sections represent simplifications of the world
where CF is most easily applied. In fact, applying CF in domains where these
properties do not hold can provide both interesting applications and interesting
research areas. For example, one might try to apply CF to non-homogenous items by
using constrained recommendations, or applying external constraints (called business
rules in the business world). Likewise, in order to perform system tasks for non-
persistent items, one might try to apply content filtering, which is explored in the next
section.

2.4 Comparing collaborative filtering to content-based filtering

Collaborative filtering uses the assumption that people with similar tastes will rate
things similarly. Content-based filtering uses the assumption that items with similar
objective features will be rated similarly. For example, if you liked a web page with
the words “tomato sauce,” you’ll like another web page with the words “tomato
sauce.” The challenge is to cleanly extract the features of items that are most
predictive. One then builds a user profile of features from the items a user has rated,
and then compares that user profile to item profiles of new items whose features are
extracted [4]. For more information, refer to Chapter AT5 [43].

Content-based filtering and collaborative filtering have long been viewed as
complementary [1]. Content-based filtering can predict relevance for items without

Collaborative Filtering Recommender Systems 11

ratings (e.g., new items, high-turnover items like news articles, huge item spaces like
web pages); collaborative filtering needs ratings for an item in order to predict for it.
On the other hand, content-based filtering needs content to analyze, and content can
be scarce in some domains (e.g., movies, music, restaurants, and books without text
reviews available); collaborative filtering does not require content. A content filtering
model can only be as complex as the content it has access to. For instance, if the
system only has genre metadata for movies, the model can only incorporate this one
extremely coarse dimension. Furthermore, if there is no easy way to automatically
extract a feature, then content-based filtering cannot consider that feature. For
example, while people find the quality of multimedia data (e.g., images, video, or
audio) for web pages important, it is difficult to automatically extract this information
[4]. Collaborative filtering allows evaluation of such features, because people are
doing the evaluating.

Content-based filtering may over-specialize. Items are recommended that match
the content features in the user's interest profile or query. Items that do not contain the
exact features specified in the interest profile may not get recommended even if they
are similar (e.g., due to synonymy in keyword terms). Researchers generally believe
collaborative filtering leads to more unexpected or different items that are equally
valuable. Some people call this property of recommendations novelty or
serendipity[21]. (See 1.6.2 for a more complete discussion.) However, collaborative
filtering has also been shown to over-specialize in some cases [57].

Content-based filtering (CBF) and collaborative filtering may be manually
combined by the end-user specifying particular features, essentially constraining
recommendations to have certain content features [50]. More often they are
automatically combined, sometimes called a hybrid approach. There are many ways
to combine them, and no consensus exists among researchers [5, 11, 12, 19, 44].
However, such systems generally use the content analysis to identify items that meet
the immediate need of the user, and use CF to try and capture features like quality that
are hard to automatically analyze. For a more detailed look at these techniques, refer
to Chapter AT6 [9].

3 Collaborative Filtering Algorithms: Theory and Practice

Over the past decade, collaborative filtering algorithms have evolved from research
algorithms intuitively capturing users’ preferences to algorithms that meet the
performance demands of large commercial applications. In this section we explore
some of the most widely known collaborative filtering algorithms. Although a good
deal of theoretical literature describes CF algorithms, little information is available to
assist practitioners in building CF systems. We highlight not only the theoretical
definition of these algorithms but their practical challenges and, where applicable,
suggest techniques to address these challenges.

Breese et al. [8] described CF algorithms as separable into two classes: memory-
based algorithms that require all ratings, items, and users be stored in memory and
model-based algorithms that periodically create a summary of ratings patterns offline.
Pure memory-based models do not scale well for real-world application. Thus,

12 J. Ben Schafer, Dan Frankowski, Jon Herlocker, and Shilad Sen

almost all practical algorithms use some form of pre-computation to reduce run-time
complexity. As a result, current practical algorithms are either pure model based
algorithms or are a hybrid of some pre-computation combined with some ratings data
in memory.

A more useful organization of collaborative filtering algorithms splits them into
non-probabilistic algorithms and probabilistic algorithms. We consider algorithms to
be probabilistic if they are based on an underlying probabilistic model. That is, they
represent probability distributions when computing predicted ratings or ranked
recommendation lists. In general, non-probabilistic models are widely used by
practitioners. Probabilistic models have been gaining favor, however, particular in
the machine learning community.

3.1 Non-probabilistic Algorithms

The most well-known CF algorithms are nearest neighbor algorithms. We
introduce the two different classes of nearest neighbor CF algorithms: user-based
nearest neighbor and item-based nearest neighbor. We also explore more briefly non-
probabilistic algorithms that transform or cluster the ratings space to reduce the
ratings space dimensionality. Other commonly cited algorithms not discussed here
include graph-based algorithms [2], neural networks [7], and rule-mining algorithms
[20].

User-based Nearest Neighbor Algorithms
Early algorithms generated predictions for users based on ratings from similar

users. We call these similar users neighbors. If a user n is similar to a user u, we say
that n is a neighbor of u. User-based algorithms generate a prediction for an item i by
analyzing ratings for i from users in u’s neighborhood. Naively, we could average all
neighbors’ ratings for item i. Equation 1 gives the naïve user formulation, where nir
is neighbor n’s rating for item i.

neighborsnumber of
uneighborsn

nir
iupred

∑ ⊂=)(),(

(1)

However, we want to weight ratings from users who are similar to u more heavily.

Thus, if userSim(u,n) is a measure of the similarity between a target user u and a
neighbor n, a prediction can be given by equation 2.

∑ ⊂
⋅=

)(
),(),(

uneighborsn
nirnuuserSimiupred

(2)

Collaborative Filtering Recommender Systems 13

Unfortunately, if the similarities of the neighbors do not add up to one, this
prediction will be incorrectly scaled. Accordingly equation 3, normalizes the
prediction by dividing by the sum of the neighbors’ similarities.

∑
∑

⊂

⊂
⋅

=
)(

)(

),(

),(
),(

uneighborsn

uneighborsn
ni

nuuserSim

rnuuserSim
iupred

(3)

Finally, users vary in their use of rating scales. To compensate for ratings scale

variations, equation 4 average adjusts for users’ mean ratings..

∑
∑

⊂

⊂
−⋅

+=
)(

)(

),(

)(),(
),(

uneighborsn

uneighborsn nni

u nuuserSim

rrnuuserSim
riupred

(4)

The GroupLens system for Usenet newsgroups, one of the first CF systems,

defined userSim()¸in equation 4 using the Pearson correlation [46]. The Pearson
correlation coefficient is calculated by comparing ratings for all items rated by both
the target user and the neighbor (e.g. corated items). Equation 5 gives the formula for
Pearson correlation between user u and neighbor n, where CRu,n. denotes the set of
corated items between u and n.

∑∑
∑

⊂⊂

⊂

−−

−−
=

nu,nu,

nu,

CR
2

CR
2

CR

)()(

)()(
),(

i
nni

i
uui

i
nniuui

rrrr

rrrr
nuuserSim

(5)

Pearson correlation ranges from 1.0 for users with perfect agreement to -1.0 for

perfect disagreement users. Negative correlations are generally believed to not be
valuable in increasing prediction accuracy [22].

Practical Challenges of User-based Algorithms
The user-based nearest neighbor algorithm captures how word-of-mouth

recommendation sharing works and it can detect complex patterns given enough
users; however it has practical challenges.

Ratings data is often sparse, and pairs of users with few coratings are prone to
skewed correlations. For example, if users share only three corated items, it is not
uncommon for the ratings to match almost exactly (a similarity score of 1). If such

14 J. Ben Schafer, Dan Frankowski, Jon Herlocker, and Shilad Sen

similarities are not adjusted, these skewed neighbors can dominate a user’s
neighborhood.

Another problem with Pearson correlation is that it fails to incorporate agreement
about a movie in the population as a whole. For instance, two users agreement about a
universally loved movie is much less important than agreement for a controversial
movie. Pearson correlation does not capture this distinction. Some user-based
algorithms account for global item agreement by including weights inversely
proportional to an item’s popularity when calculating user correlations [8].

The original user-based algorithm as implemented in GroupLens included all users
in a CF system in a prediction neighborhood [50]. Later algorithms improved
accuracy and efficiency by limiting the prediction calculation to a user’s closest k
neighbors [22].

Most importantly, calculating a user’s perfect neighborhood is expensive -
requiring comparison against all other users. Thus, in a naïve implementation, the
time and memory requirements of user-based algorithms scale linearly with the
number of users and ratings. Researches have tried many techniques to reduce
processing time and memory consumption:
• Subsampling - In sampling, a subset of users is selected prior to prediction

computation. Neighborhood computation time remains fixed, and schemes have
been proposed to intelligently choose neighbors in order to achieve virtually
identical accuracy.

• Clustering - Clustering algorithms have been used to quickly locate a user's
neighbors [33]. In these schemes, a user is compared to groups of users, rather than
individual users. Clusters of users similar to the target are quickly discovered, and
nearest neighbors can be selected from the most similar clusters. Both k-means
clustering [35], and hierarchical divisive [28] and agglomerative clustering [31]
can segment users into clusters. One challenge in using clustering is that clustering
schemes use distance functions, such as Pearson correlation to both form the
clusters and measure distance from a cluster. However, due to missing data,
distance functions generally do not obey the triangle equality and are not true
mathematical metrics4. This can lead to unintuitive and unstable clustering.

Item-based Nearest Neighbor Algorithms
Item-based nearest neighbor algorithms are the transpose of the user-based

algorithms. While user-based algorithms generate predictions based on similarities
between users, item-based algorithms generate predictions based on similarities
between items [47]. The prediction for an item should be based on a user’s ratings for
similar items. Consider the ratings matrix shown in . Figure 3

Assume we are trying to predict a rating for user #3, item #2 (marked by the X).
First, we observe that item #2’s ratings are very similar to item #3’s ratings, but not as
similar to item #1’s ratings. We now try to predict the rating “X” by building a
weighted average of user #3’s other ratings (3 for item #1 and 4 for item #3). Since

4 A distance metric has four properties: it is non-negative, the identity distance is 0, it is

reflexive, and the triangle equality holds. The triangle equality is generally most difficult
requirement to meet.

Collaborative Filtering Recommender Systems 15

item 2 is similar to item 3, we might guess that the rating for item #3 is more
important. We conclude that a good guess is 0.25*3 + 0.75*4 = 3.75.

Figure 3: An item-based nearest-neighbor algorithm generates predictions based on similarities
between items. Observe that item two is fairly similar to item three and moderately similar to
item one.

We have just outlined the item-based prediction algorithm, which we formalize in
equation 6. A prediction for a user u and item i is composed of a weighted sum of the
user u’s ratings for items most similar to i.

∑
∑

∈

∈
⋅

=
)(

)(

),(

),(
),(

uratedItemsj

uratedItemsj
ui

jiitemSim

rjiitemSim
iupred

(6)

Note that in equation 6, itemSim() is a measure of item similarity, not user

similarity. Average correcting is not needed when generating the weighted sum
because the component ratings are all from the same target user.

Several variations exist for calculating the similarity for a pair of items (i, j).
Adjusted-cosine similarity, the most popular (and believed to be most accurate)
similarity metric, is computed using all users who have rated both item i and j.
Equation 7 gives the formula for adjusted-cosine similarity, where RBi,j denotes the
set of users who have rated both item i and item j.

∑∑
∑

⊂⊂

⊂

−−

−−
=

jiji

ji

RBu
uuj

RBu
uui

RBu
uujuui

rrrr

rrrr
jiitemSim

,,

,

22)()(

)()(
),(

(7)

The only difference from Pearson correlation is that average adjusting is performed

with respect to the user, not the item. As in the user Pearson correlation, the
correlation value ranges from –1.0 to 1.0.

16 J. Ben Schafer, Dan Frankowski, Jon Herlocker, and Shilad Sen

There is evidence that item-based nearest neighbor algorithms are more accurate in
predicting ratings than their user-based counterparts [47].

Practical Challenges in Item-based Algorithms
Theoretically, the size of the model could be as large as the square of the number

of items. In practice, we can substantially reduce this size by only storing correlations
for item pairs with more than k coratings. Sarwar et al. prune the model even further
by only retaining the top n correlations for each item. Such modifications yield item-
based algorithms that are relatively efficient in both memory usage and CPU
performance. Note that pruning many of the correlations means that it may be more
difficult to make a prediction for a given target item and user, since the items
correlated with the user’s ratings may not contain the target item.

As in the user algorithm, item pairs with few coratings can lead to skewed
correlations and care must be exercised to not let skewed correlations dominate a
prediction.

Non-probabilistic Dimensionality Reduction Algorithms
Large CF applications may support millions of users and items [33]. Other

domains may have such a sparsity of ratings that there are few coratings. Several
algorithms reduce domain complexity by mapping the item space to a smaller number
of underlying “dimensions.” Intuitively, these dimensions might represent the latent
topics or tastes present in those items. The smaller “latent” dimensions reduce run-
time performance needs and lead to larger numbers of co-rated dimensions. These
techniques define a mapping between a user's ratings and their underlying tastes. An
item’s prediction can then be generated based on a user’s underlying tastes. Mapping
functions generally consist of simple vector operations, and predictions for an item
can be calculated in constant time. Vector-based techniques for extracting underlying
dimensions include support vector decomposition [48], principal component analysis
[18], and factor analysis [10].

Practical Challenges in Dimensionality Reduction Algorithms
Mathematical dimensionality reduction techniques such as singular value

decomposition [48] and principal component analysis [18] require an extremely
expensive offline computation step to generate the latent dimensional space. Practical
implementation of these techniques generally requires the use of heuristic methods for
incrementally updating the latent dimensional space without having to entirely
recompute – such as the folding-in technique for singular value decomposition.
However, the primary challenge to utilizing such techniques is the mathematical
complexity – which can lead to challenges debugging and maintaining software
utilizing those techniques. While there is some evidence that these techniques can
improve accuracy in predicting ratings [49], for the most part, the improvement has
not been substantial enough to overcome the practical challenges of complexity.

Association Rule Mining
Association mining techniques build models based on commonly occurring

patterns in the ratings matrix [20, 32]. For example, we may observe that users who

Collaborative Filtering Recommender Systems 17

rated item 1 highly often rate item 2 highly. A particular rule is represented by an
input condition (e.g. item 1 rated highly) and a result condition (e.g. item 2 rated
highly). The support of a rule represents the fraction of users who have rated both the
input and result conditions, and the accuracy of a rule is the fraction of users with the
input condition that exhibit the result condition.

In order to generate a predicted rating for a user u and item i, we first select the
rules with a result condition of item i that only include items rated by user u. We then
use a heuristic to translate the support, accuracy, and ratings for input conditions into
a predicted rating.

For more information, refer to Chapter MT3 [39].

Practical Challenges in Association Rule Mining
Naïve association rules can treat each rating value as independent. For example, a

rating of 1 for a particular item is different than a rating of 2, even though both may
be interpreted as the user indicating dissatisfaction with the item. This independence
can dramatically increase the sparsity of an already sparse space. To overcome this,
implementers generally place “similar” ratings into bins using one of several
strategies:
• High and low ratings bins – Divide ratings into two bins; those above and those

below a user’s average rating.
• High ratings – Only consider ratings above a user’s average when building rules.
• All ratings – Treat all ratings as identical when building rules.

A general drawback in association mining is that, since rating bins are treated
discretely, we lose any notion of the numeric relationship among ratings. Although
this relationship is theoretically meaningful, in practice it seems to have little impact.

Association rule mining in non-CF domains often looks for input patterns
consisting of multiple items (e.g. if the user rated items 1 and 2 highly, they will rate
item 3 highly). While these patterns may be useful, mining the patterns is too slow in
CF domains due to the extremely high dimensionality.

3.2 Probabilistic Algorithms

Probabilistic CF algorithms explicitly represent probability distributions when
computing predicted ratings or ranked recommendation lists. In general, probabilistic
algorithms try to leverage well-understood formalisms of probability.

Most probabilistic CF algorithms calculate the probability that, given a user u and a
rated item i, the user assigned the item a rating of r: p(r|u,i). We calculate a predicted
rating based on either the most probable rating value or the expected value of r.
Equation 8 gives the formula for user u’s expected rating for item i.

∑ ⋅=
r

iurpriurE),|(),|((8)

18 J. Ben Schafer, Dan Frankowski, Jon Herlocker, and Shilad Sen

The most popular probabilistic framework involves Bayesian-network models that
derive probabilistic dependencies among users or items. Some of the earliest
probabilistic CF algorithms were proposed by Breese et al., who describe a method
for deriving and applying Bayesian networks using decision trees to compactly
represent probability tables [8]. A separate tree is constructed for every
recommendable item. The branch chosen at a node in the tree is dependent on the
user's rating (or lack of rating) for a particular item. Nodes in the tree store a
probability vector for user's ratings of the predicted item. In theory, non-naïve
Bayesian networks improve upon standard item-based algorithms by modeling
dependencies between input items used to calculate a prediction. However for multi-
valued ratings, there has been no published evidence of Bayesian networks
consistently outperforming item-based nearest neighbor algorithms.

There has also been a good amount of work on developing probabilistic
clustering/dimensionality reduction techniques. Probabilistic dimension reduction
techniques introduce a hidden variable p(z|u) that represents the probability a user
belongs to the hidden class z. Equation 9 gives the formula for calculating the
probability of user u rating item i value r.

∑=
z

uzpzirpiurp)|(),|(),|((9)

The corresponding prediction is the expectation of the rating value (equation 10).

∑ ∑

⋅=

r z
uzpizrpriurE)|(),|(),|(

(10)

Hoffman presents an expectation maximization (EM) algorithm for CF that

estimates latent classes z with Gaussian probability distributions [26]. Clustering
algorithms also have been used to estimate latent classes [56].

One advantage of probabilistic algorithms is that they can produce a probability
distribution across possible rating values – information that captures the likelihood of
each possible rating value. From this information, not only can you compute the most
probable rating, you can also compute a likelihood of that rating being correct – thus
capturing the algorithm’s confidence. There has been a recent attempt to create a
hybrid approach that utilizes the nearest neighbor algorithm, but represents ratings as
discretized probability distributions rather than a point rating [36].

3.3 Over-arching Practical Concerns

Regardless of choice of algorithm, real-world CF systems need to address several
problems that are generally not covered in research literature.

Collaborative Filtering Recommender Systems 19

Adjust for few ratings
Items and users with few ratings can inappropriately bias CF results. Algorithms

may take steps to adjust for users, items, and user and item pairs with few co-ratings
(we’ll generally call these rarely-rated entities). We will compare techniques for
adjusting for rarely-rated entities, using a user-based algorithm as an example:
1. Discard rarely-rated entities – Algorithms often only incorporate data with greater

than k ratings. In a user-based algorithm, for example, we would discard neighbors
with fewer than k co-ratings with the target user. Although this is a simple and
clean approach it can decrease the coverage of the CF system.

2. Adjust calculations for rarely-rated entities– This technique adjusts calculations
for rarely-rated entities by pulling them closer to an expected mean. For instance,
Pearson similarities for users with few co-ratings may be adjusted closer to 0. CF
systems often make the adjustment amount inversely proportional to the number of
ratings. Although adjustment can be effective, tuning adjustment parameters can be
difficult and unstable.

3. Incorporate a prior belief – We can avoid skew by incorporating artificial data
points that match an expected distribution. For example, we may believe that users
ratings will generally match a probability distribution p. We can incorporate this
prior belief into user correlation calculation by including k artificial co-rated items
whose ratings are independently drawn from p.

Prediction vs. Recommendation
Prediction and Recommendation tasks place different requirements on a CF

system. To recommend items, a system must be prepared to know about a subset of
items, but perhaps not all. Some algorithms save memory and computation time by
taking advantage of this [33, 47]. To provide predictions for a particular item, a
system must store information about every item, even rarely rated ones. Algorithms
that are required to present personalized predictions for many items often have larger
memory requirements.

On the other hand, recommendation tasks require calculation of predictions for
many (if not all) items. A single prediction request can therefore afford a more
expensive prediction calculation than a recommendation request.

Confidence Metrics
CF systems can supply a confidence metric that indicates the support for a

particular prediction. Applications may choose to not display predictions with
confidence measures below a certain threshold.

Confidence measures can also be used when selecting items for recommendation.
CF algorithms generally choose to recommend those items with highest predicted
ratings. Some CF systems may choose to tradeoff items with high predictions and low
confidence for items with less-high predictions and high confidence.

Confidence measures are specific to each CF algorithm. Probabilistic algorithms
may be able to use their computed probability distributions to estimate confidence.
User-based algorithms often use confidence measures that incorporate the agreement
for an item in a user’s neighborhood, and the number of corated items between

20 J. Ben Schafer, Dan Frankowski, Jon Herlocker, and Shilad Sen

neighbors and the user. Item-based algorithms may measure the number of ratings for
correlated pairs of items contributing to a prediction.

4 Acquiring Ratings: Design Tradeoffs

Ratings data from users on items are what enable collaborative filtering. In this
section we will discuss in more depth the different kinds of ratings data that can be
used and key concepts and decisions involved with acquiring ratings for collaborative
filtering systems.

4.1 Explicit versus Implicit Ratings: Tradeoff

Explicit ratings provided by users provide the most accurate description of a user’s
preference for an item with the least amount of data. However, because explicit
ratings require additional work from the user, it can be challenging to collect ratings –
particularly when creating a new CF service. On the other hand, implicit ratings –
observations of user behavior from which preference can be inferred – can be
collected with little or no cost to the user, but ratings inference may be imprecise. As
an example, consider using “time spent reading information about a product” as an
implicit rating for that product. Intuitively, if a user spends a lot of time reading about
a product, we might conclude that they would be interested in purchasing that
product. However, there are reasons that this inference could be inaccurate – the user
may have taken a coffee break just after opening the product info page, or the user
may have concluded that the product was inappropriate after spending the time to read
about it. Thus if implicit ratings are used, there is more uncertainty in the
computation. Other examples of implicit ratings are discussed in Oard and Kim [40].

The more ratings that you have, the more uncertainty in the ratings you can handle.
Uncertainty in rating values, including implicit ones is handled by aggregating ratings
– collecting multiple observations of variables that are predictive of a rating and
combining them into a single estimated rating – either by voting [15] or averaging
[46, 52]. Thus if you are able to collect large numbers of ratings, then the errors
introduced by uncertainty of implicit ratings can be canceled out by aggregation. In
such a situation, you may be able to build a very successful CF system without
explicit ratings. Good examples from the music domain are AudioScrobbler5 and
MusicStrands6, which track every single song you play. With music, after enough
ratings (plays) have accumulated, these implicit ratings may represent user taste much
better than small explicit ratings scales. A five point rating scale only allows you to
group a user’s rated items into five ranks – the CF system cannot distinguish
difference in taste between items with the same rating value. When using the implicit
play count, user may play individual songs thousands of times, and since each song is
likely to be played a different number of times, a more complete ranking of items a

5 AudioScrobbler is owned by Last.fm which can be found at http://www.last/fm/index.php
6 http://www.musicstrands.com/

Collaborative Filtering Recommender Systems 21

user likes can be created. If you cannot capture large numbers of implicit ratings, then
you will most likely need some form of explicit rating.

4.2 The Challenge of Collecting Explicit Ratings

Explicit ratings require dedicated attention of the user. Early researchers believed
that users would not invest the time rating items required for CF systems. From an
economic perspective it would appear that if incremental recommendations are free,
then everybody would wait for others to identify what was good and there would be
insufficient ratings [3]. However, during the past decade, experience has
demonstrated that collecting explicit ratings is not as challenging as previously
thought.

The first reason is that – in order to succeed – a CF system doesn’t need lots of
ratings from all people. Instead you just need a relatively small number of “early
adopters” who rate frequently and continuously. These early adopters provide
sufficient information to generate recommendations for the remaining users of the
system. The remaining users must each then just provide a limited number of ratings
in order for the system to learn their preferences.

The second reason that collecting explicit ratings is easier than previously expected
is that users appear to gain many benefits from rating other than higher quality
recommendations. Although no conclusive studies have been done, researchers and
practitioners have proposed that users gain the following rewards from rating:

• An increased feeling of having contributed to advancing a community
• Gratification from having one’s opinion’s voiced and valued
• An ability to use the CF system as an extension of their memory of what they like

and dislike.

Maintainers of CF systems sometimes use incentives to encourage users to provide

more explicit ratings. For example, sites may exchange user ratings for “site points.”
These site points can be exchanged for rewards (e.g. t-shirts and hats) or privileges
(e.g. the right to view privileged content). Incentives can increase the number of
ratings provided by users, but users who rate only when provided with incentives are
often price sensitive, and will move to a more rewarding opportunity if the reward to
rate drops or the reward to participate in another community is increased.

4.3 Rating Scales

Another significant design decision involves choosing the explicit rating scale. The
finer grained the scale, the more information you will have regarding each user’s
preference. Finer grained scales require more complex user interfaces. The most
common types of ratings are shown in . Table 2

At some point, increasing the precision of the rating scale further may fail to add
value. If a very precise scale is selected, such as 1-100, you are unlikely to get a user
to give the same rating for an item if you ask them at different points in time – thus

22 J. Ben Schafer, Dan Frankowski, Jon Herlocker, and Shilad Sen

you increase the uncertainty in the rating. Perhaps the most important consideration is
the desires of the user population. Users may feel that they cannot fully describe their
tastes with few possible rating values. In MovieLens, users were frustrated that they
were not able to give ratings as precise as the systems predictions of their ratings –
predicted ratings were to the closest half point while user ratings were integers [13].

Table 2: Most common explicit rating scales.

Rating Scale Description
Unary Good or “don’t know”
Binary Good or Bad
Integer “Likert”-like Integers: 1-5, 1-7, or 1-10

4.4 Cold Start Issues

The “cold-start” problem describes situations in which a recommender is unable to
make meaningful recommendations due to an initial lack of ratings. This problem can
significantly degrade CF performance. It can occur under three scenarios.

New User. When a user first registers with a CF service, they have no ratings on
record. Thus no personalized predictions can be given. For example, a new user to
MovieLens has no ratings in the system, so a neighborhood of similar users can not be
calculated. This may be solved in several ways. For example, by a) having the user
rate some initial items before they can use the service; b) displaying non-personalized
recommendations (population averages) until the user has rated enough; c) asking the
user to describe their taste in aggregate, e.g., “I like science fiction movies”; d) asking
the user for demographic information, or e) using ratings of other users with similar
demographics as recommendations.

New Item. When a new item is added to a CF system, it has no ratings, so it will
not be recommended. For example, MovieLens is unable to recommend new
Hollywood releases until someone has entered an initial rating. Unfortunately, in
many domains, users are less likely to rate items that are not recommended to them.
Generally this is not a show-stopper, because most good items can be discovered
through means other than the CF system and will get eventually rated. Users also tend
to be forgiving of systems that don’t recommend obscure items. However, in domains
where there may be many “sleepers” – unrated items that are very good, several
techniques can be used, including: a) recommending items through non-CF
techniques – content analysis or metadata, and b) randomly selecting items with few
or no ratings and asking users to rate those items.

New Community. The biggest cold-start problem is bootstrapping a new
community. If a new service’s value is in its personalized CF recommendations, then
without ratings it may not have sufficient differentiating value – thus not retain users
long enough to build up ratings. The most common solution is to provide rating
incentives to a small “bootstrap” subset of the community, before inviting the entire
community to use the service. Other approaches are to maintain users’ interest
through alternate services, initially generate recommendations using non-CF
approaches, or to start with a set of ratings from another source outside the
community.

Collaborative Filtering Recommender Systems 23

5 Evaluation

Evaluation measures how well a collaborative filtering system is meeting its goals,
either in absolute terms or in relation to alternative CF systems. Unfortunately, there
is no well-accepted metric that can evaluate all-important criteria related to the
performance of a CF system. The appropriate metric to choose may depend on the
type of items being recommended, the user tasks supported by the CF system, and any
external goals that the service providers may have (e.g., promotional or inventory
depletion). An in-depth discussion of evaluation considerations of collaboration
filtering systems can be found in Herlocker et al. [21]. In this section, we first discuss
accuracy, which is generally considered the most important criteria to evaluate, and
then discuss more briefly some of the other criteria that may be important to evaluate
and their associated metrics.

5.1 Accuracy

The most prominent evaluation metrics in the research literature measure the
accuracy of the system's predictions. Accuracy can either be measured as the
magnitude of error between the predicted rating and the true rating, or the magnitude
of error between the predicted ranking and the “true” ranking. Predictive accuracy is
the ability of a collaborative filtering system to predict a user's rating for an item. The
standard method for computing predictive accuracy is mean absolute error (MAE) –
the average absolute difference between the predicted rating and the actual rating
given by a user. The advantage of MAE is that it is simple, well understood, and
traditional significance tests can be applied to it. Furthermore, MAE seems to
intuitively capture the quality of a CF system – we want predictions to be as close as
possible to the true ratings. However, MAE has proven to be an unreliable measure of
a ranked recommendation list [36]. Users perceive errors at the top of a
recommendation list as much more costly than similar errors at the bottom of lists.
MAE does not differentiate between errors at the top and errors at the bottom of lists.

Rank accuracy metrics attempt to compute the utility of a recommendation list to a
user. Common rank accuracy metrics include precision [36, 47] and half-life utility
[8]. Precision is the percentage of items in a recommendation list that the user would
rate as useful. In CF, it is often computed at varying lengths of recommendation list
(1, 3, 5, etc). The half-life utility metric computes a value for a ranked list that is
intended to capture percentage of the maximum utility achieved by the ranked list in
question. The maximum utility is achieved if all of the items rated as useful appear
above all the items rated as not useful. In the half-life utility metric, mistakes at the
top of the ranked list are weighted exponentially greater than mistakes further down
the list.

If the user interface of the collaborative filtering system primary provides ranked
lists of “best-bet” recommendations, then the accuracy of the system should be
evaluated with a rank accuracy metric. If the system displays predictions of ratings
directly to the user, then it is important to evaluate the system with a predictive
accuracy metric. In many cases, it may make sense to use both.

24 J. Ben Schafer, Dan Frankowski, Jon Herlocker, and Shilad Sen

5.2 Beyond Accuracy

While many of the published evaluations of CF systems measure accuracy,
researchers and practitioners have come to learn that accuracy is not the only criteria
of interest, and in some cases, may not even be the most important. Several other
evaluation criteria have been explored.

• Novelty is the ability of a CF system to recommend items that the user was not

already aware of. While non-novel recommendations can still be valuable, for
many applications novelty is one of the most valued characteristics of the CF
system’s recommendations. Even stronger than novelty is the idea of serendipity,
where users are given recommendations for items that they would not have seen
given their existing channels of discovery. To illustrate the distinction, consider a
news article recommender. A traditional content-based personalization system may
generate recommendations that are not novel, because if I say I like a particular
news article, then it will recommend other news articles with similar text, including
stories about the exact same news event. A system tuned for novelty will work
hard to not recommend news stories to me of which I am already aware. A
serendipitous system would recommend to me news articles about topics that I
have never read about before. Researchers have studied how to adjust algorithms to
promote serendipity and novelty [47], but measuring novelty is challenging
because it requires live user studies where participants indicate if a
recommendation was novel.

• Coverage is the percentage of the items known to the CF system for which the CF
system can generate predictions. It is also possible to compute variants such as the
percentage of items that have the potential of being recommended to users, as
performance optimizations in recommendations may prevent certain items from
ever being recommended [49].

• Learning Rate measures how quickly the CF system becomes an effective
predictor of taste as data begins to arrive. Generally these are computed per-user,
measuring the number of ratings that a user has to provide before they are getting
high quality personalized predictions [51].

• Confidence describes a CF system’s ability to evaluate the likely quality of its
predictions. Most CF systems generate rankings based on the most probable
predicted rating. A CF system that can accurately compute its confidence in a
prediction has the ability to limit recommendations to high confidence ones,
leading to a tradeoff of fewer false positives in return for decreased coverage and
possibly decreased novelty. If confidence in predictions can be computed, it can be
displayed to users to help them decide if the risk-return ratio is appropriate [23].

• User satisfaction metrics. The metrics described above are only a sample of
possible evaluation metrics. In particular there are many more metrics that can be
applied if researchers have the ability to present a system to users, and measure
how users perceive the system. This can be accomplished either by surveying the
users or measuring retention and use statistics. Good examples include Swearingen
and Sinha [54] and Dahlen et al. [14].

Collaborative Filtering Recommender Systems 25

• Site performance metrics. In addition to the more mathematical and often “offline”
metrics described above, websites may choose to use fairly simple site analysis
metrics when adding a recommender to a site or modifying the design of an
existing recommender. Such metrics might include tracking an increase in items
purchased or downloaded, an increase in overall user revenue, or an increase in
overall user retention. While such trends are easy to track and measure, they may
be difficult to correlate to specific changes to an active website.

In conclusion, it is best to select a suite of metrics that will evaluate the criteria that

are most important for the successful operation of a particular CF system. For
example, if you are using CF to generate a top-5 recommendations list for your web
site, then you might compute precision at top-5, top-3, and top-1. Furthermore, if the
goal of your web site recommendations is to introduce your users to new things, then
you might also do some user studies where you shown recommendation lists to users
and ask them to rate the novelty of those recommendations. Predictive accuracy
metrics like MAE may not be so useful if you are not displaying predicted rating
values to users.

6 Rich Interfaces & Social Navigation

Early user interfaces for CF systems simply provided ranked list of
recommendations, potentially with predicted ratings. The recommendation engine
was a “black-box” – there was no transparency into how a prediction was computed
[14, 17, 24, 46]. A critical trend in recent years is the exploration of user interfaces
that enable more rich interaction with the underlying data of a collaborative filtering
system, and CF systems that expose more information about the users from whom
recommendations are (or can be) generated. In this section, we describe explanation
and social navigation – two of these trends, and why they are so important.

One limitation of the black box approach was that the user interfaces to the CF
systems were unable to communicate to the user when predictions were more or less
risky than normal. Yet the need for this was common – when users were new or when
items were new, predictions are more risky because there is less data on which to base
inferences. More generally, the black box approach does not expose the reasoning or
the data used in a recommendation. As a result, the user has little data on which to
base decisions such as a) should they trust the recommendation process, b) is the
current recommendation highly confident – either through trusted sources or
overwhelming evidence, or c) is this recommendation appropriate for the user’s
immediate context or need.

6.1 Explanation

Initial work on the use of explanation in CF recommendations was promising [23],
and has more recently been adopted commercially by Amazon.com, which has a link
“why was I recommended this item” – the link will list previous ratings or purchases

26 J. Ben Schafer, Dan Frankowski, Jon Herlocker, and Shilad Sen

that you made that strongly influenced the recommendation at hand ().
Explanations of CF recommender systems are challenging because the underlying
predictive models are complex aggregations of large quantities of data, often with
significant probabilistic reasoning. Yet initial research suggests that users are
overwhelmed if they are presented with too much data within an explanation [23].
While the current work on recommendations is far from conclusive, promising
approaches that have been explored include: showing histograms of a user’s
neighbors’ ratings for the recommended item and showing key items that the user
rated that influenced the recommendation.

Figure 4

Figure 4 : Amazon.com provides customers with list of previous purchases and ratings that
strongly influenced a particular recommendation.

There is also a correlation between persuading a user that the recommendation is

correct and explaining the recommendation to them. For many contexts, it may be
sufficient to supply data from other sources not used in the recommendation that
confirms the recommendations – such as reviews from critics. This may help persuade
the user that the recommendation is good, yet reveals nothing about the reasoning
behind the recommendations.

Collaborative Filtering Recommender Systems 27

6.2 Social Navigation

Most of the CF systems we have discussed so far have been systems that use the
group as a whole to help each individual user. Such systems tend to ignore the
importance of the groups themselves. Social navigation systems encompass a variety
of techniques that help people work together to help each other by making the
aggregate behavior of the community visible. Users can employ this behavior to find
their way through often crowded web spaces.

Höök et al. consider one type of social navigation system in which each visitor to a
web site leaves “footprints” – telltale signs regarding what information the visitor
considered and how frequently or in-depth. These footprints help other users find
their way more readily through that same space [27]. This type of visualization has
been called “read-wear” or “edit-wear” [25]. Early users leave footprints that help
later users make sense of the wealth of alternatives available to them. Later users
benefit from the footprint, because they are able to direct their attention to the parts of
the site that are most valuable to them. As information spaces become more crowded
with users it may become important to have systems that show us only those
footprints that are most useful to us.

While these early CF and social navigation systems were clearly “collaborative,”
they almost always have provided “implicit” collaboration. Users benefited from the
ratings and footprints left by other users in an anonymous and virtually untraceable
manner. Some second generation collaborative filtering services have begun to
experiment with allowing more “explicit” collaboration by exposing more of the
identity of the other members of the community whose ratings are being used to
generate a user’s recommendations.

One example is epinions.com, which is a site designed to help users make
purchasing decisions. On epinions.com, users rate and review products that they have
purchased and these reviews are made available as recommendations to others. When
a user views a recommendation/review, she can also look at the profile of the user
who made the review, seeing information such as what other reviews they have
written and how other people have responded to those reviews. She can explicitly
state that she “trusts” a user as a reviewer. She can also “block” a reviewer, so that
user’s ratings/reviews are not shown.

Interfaces like epinions.com attempt to mimic more accurately the social process of
word-of-mouth recommendations. A user could choose those people whose tastes he
agreed with to provide recommendations, yet could choose different people to trust
for different contexts. He could base his trust of another user on his observations of
their activity within the community (their ratings) or on other’s expressed opinions of
their value. As users began to rate each other, explicit social networks could be
expressed – “webs of trust.” Users could then navigate these social networks in their
search for items or products that would meet their need.

CF web services that offered this social navigation often evolved to be much more
than recommendation sites. Particularly interesting was that the CF aspects of the
system would bring together communities of common interest that would then engage
in direct social interaction through discussion groups, chat rooms, or email. In theory,
this direct social connection is the ultimate rich interface for recommendation. The CF

28 J. Ben Schafer, Dan Frankowski, Jon Herlocker, and Shilad Sen

software enables a user to navigate a potentially immense social network and find
exactly those people who most closely share their tastes.

For a more detailed look at this topic, refer to Chapter CH1 [16]

7 Ongoing Challenges to Collaborative Filtering

7.1 Privacy and Security

In order to provide personalized information to users, CF systems need to know
things about those users. In fact, the more the system knows about a user, the better
predictions it can provide to that user. With this increased information stored by a
system often comes an increased concern on the part of the user regarding what
information is collected, where and how it is stored, and how it is used. In centralized
CF architectures, a single repository stores all user ratings. If the central server
becomes compromised or corrupt, a user's anonymity can be destroyed. Users must
trust that the CF provider will not use their preferences except for providing ratings
and recommendations.

Distributed architectures may deploy ratings or models to each user, risking
exposure of information to every peer [46]. To protect against this, researchers have
developed security techniques building on encryption and shared keys [10]. In these
schemes, a user can encrypt their ratings, and peers can tally encrypted ratings. Once
ratings are totaled, distributed agents use shared keys to decrypt the rating tallies,
without being able to see the original ratings.

Even systems that maintain the security of their users' ratings can be exploited to
reveal personal information, particularly for users with unusual tastes. Ramakrishnan
et al [45] use a graph-theoretic framework to explore these concerns. They found that
“weak ties” (users who connect clusters of different tastes) are most susceptible to
exploitation. Unfortunately, it is often these esoteric users that are most valuable to
recommender systems, because they can provide users with unexpectedly novel
recommendations. For more on the issue of privacy, see Chapter CH3 [29].

7.2 Trust

Recommender systems may break trust when malicious users give ratings that are
not representative of their true preferences. What happens to a CF system if one or
more users decide to “attack” an item by purposefully lowering their rating(s) of the
item? What happens if a company bombards a recommender with inflated ratings of
its own products (e.g. Sony using quotes from made-up critics to promote its films
[6])? There have been many examples of these “shilling” attacks. O’Mahoney et al
[42] showed that users could, in fact, artificially raise and lower predicting ratings.
User-based algorithms are more susceptible to shilling than item-algorithms, as are
new or rarely rated items. Unfortunately, this vulnerability remains a significant

Collaborative Filtering Recommender Systems 29

challenge to collaborative filtering systems. Methods researchers use to detect attacks
are not even sensitive enough to detect harsh attacks [29].

While these shilling attacks may seem slightly benign on the surface, further
research has suggested that their effect may be more influential than originally feared.
Cosley et al. demonstrated that users may not only perceive biases in ratings, but also
adjust their own ratings to match recommenders’ biases [13]. This observation
indicates that shilling effects may be compounded as having viewed predictions based
on the biased ratings potentially skews later users’ ratings. More research is needed to
understand how to identify attacks and protect systems from them.

8 Open Questions

This section discusses some open questions in the field of collaborative filtering.
They are grouped into algorithmic questions (with an emphasis on temporal
questions), and questions of broader access to collaborative filtering systems.

8.1 Algorithmic questions

Evaluation metrics. There have been many metrics of recommendation quality
proposed [21]. Which ones capture what people perceive as good quality? Which ones
are important?

Predicting well and recommending well at the same time. As we discussed in
section 2.2, efficient algorithms for recommendation may choose not to produce
predicted values at all, or may choose to only store a small amount of information
necessary to recommend some items. However, predicting a rating for a given user
and item is an appealing application. Are there efficient, scalable algorithms that both
recommend and predict well?

Tagging. Social systems such as flickr and del.icio.us, which allow users to tag
things (photos and websites, respectively) with keywords, are increasing in popularity
and have captured the imagination of many people. These are collaborative filtering
systems surely, though without much automation as yet. Other tagging systems have
been around for years (e.g., IMDB’s movie “keywords”). There are many interesting
research questions. How can collaborative filtering algorithms be applied to tags? Can
tags be used in conjunction naturally with ratings?

Tags without ratings are missing information. Tagging a movie “high-speed car
chase” does not indicate whether that was a good thing or not. Is there a hybrid
solution, where tags have associated explicit or inferred ratings?

8.2 Temporal questions

These questions are about the behavior of a collaborative filtering system over
time.
1. Item lifecycle.

a) When does an item have enough ratings to be accurately recommendable?

30 J. Ben Schafer, Dan Frankowski, Jon Herlocker, and Shilad Sen

b) When is an item a rising trend, falling trend, or a fad? Are many items are
like that?

2. User lifecycle.
a) When does a user have enough ratings to get good recommendations?
b) Can one identify the items for which it is possible to give good

recommendations for a given user?
c) At what point do additional user ratings fail to improve his recommendations

because the system has built a sufficiently accurate model (diminishing
returns)? Can users detect this point and do they change the way they use
the system?

d) Are more ratings useful again as items are added?
e) How do old ratings affect a user’s recommendations, versus new ratings? Do

user tastes shift over time? Can we detect it?
3. Ratings database lifecycle.

a) When is a rating “stale” (i.e., no longer reflective of the opinion of the rater)?
b) When does a database have enough ratings to give good recommendations?
c) Can one identify which items are likely recommendable?
d) How does the transition from not enough ratings to enough ratings look? Is

there a critical threshold?
e) Is it useful to expire (not use) ratings for the purposes of recommendations?

8.3 Broader Access

Collaborative filtering systems have been around for at least a decade. However,
for the most part only large companies or research labs actually run them, because
they require unusual expertise, considerable resources, or both. Many more people
might be interested in giving opinions to each other in an automated system if
appropriate infrastructure were present, and the range of items, domains, and opinions
might be far more diverse. What are other effective ways to access or deliver the
power of collaborative filtering?

User interfaces
The most well-known collaborative filtering systems are centralized web-based

applications with explicit ratings. Other interfaces are emerging that bring the
technology closer to users, who are more likely to use it if it is easy. Wikipedia and
SourceForge list several applications with embedded collaborative filtering. For
example, Audioscrobbler offers a plug-in to several music players (Winamp,
Windows Media Player, iTunes, and several others) that collects data about which
songs are played, sends it to a central web site, and produces music recommendations
(Figure .) 5

Other systems have been proposed, but are not yet well studied. Miller investigates
algorithms for portable, user-controlled, accurate recommendations on palmtop-sized
devices [38]. These allow the users to remain anonymous and autonomous.

Collaborative Filtering Recommender Systems 31

Figure 5 : After installing an Audioscrobbler plugin for your media player (eg: Winamp,)
information about every song you listen to on your computer is sent to Last.fm to update your
profile.

Libraries or toolkits
Once well understood, a technology can be bundled into a library or toolkit7

available for embedding into an application. In addition to companies that do this
commercially, there are several free, open-source alternatives8. However, there are no
CF toolkits or libraries that have wide usage, as Apache and Internet Information
Server (IIS) do in the web server space. Even though many designers see clear value
in recommenders, and there seems to be increasing numbers of them on the web, few
tool kits or libraries are gaining wide use. Why is this? What is the right functionality
and interface for a toolkit suitable for a wide audience?

Data
Increased public availability of ratings datasets will enable more effective research

into collaborative filtering, will allow practitioners to prototype CF system, as well as
solve the “cold-start” problem for communities. Organizations often keep that data
private, whether for competitive advantage or privacy concerns. Some are starting to
open up their data. The EachMovie movie rating dataset was the most popular CF

7 For more information on collaborative filtering toolkits, consult http://en.wikipedia.org/wiki/

Collaborative_filtering#Software_libraries.

8 Open source toolkits include CoFe (http://eecs.oregonstate.edu/iis/CoFE/), MultiLens

(http://www.cs.luther.edu/~bmiller/dynahome.php?page=multilens), and Taste
(http://taste.sourceforge.net/).

32 J. Ben Schafer, Dan Frankowski, Jon Herlocker, and Shilad Sen

dataset until it was retired in October 2004. Remaining freely available datasets
include MovieLens, Jester, and Book Crossing9.

9 Summary

Collaborative filtering is one of the core technologies that will power the adaptive
web. Content-based personalization can be effective in limited circumstances, but for
the most part, it will likely be decades or longer before our hardware and software
technology can begin to automatically recognize the subtleties of information that are
important to people – particularly aspects of aesthetic taste. Until then, in order to
filter information based on such complex dimensions, we need to include people in
the loop, who analyze the information and condense their opinions into data that can
be easily processed by software – ratings. In this chapter, we have attempted to
provide a snapshot of the current understanding of collaborative filtering systems and
methods. By necessity, as masses of information become ubiquitously available,
collaborative filtering will also become ubiquitous. In the process, we will continue to
gain a deeper understanding of the dynamics of collaborative filtering.

References

1. Adomavicius, G. and A. Tuzhilin, Toward the Next Generation of Recommender
Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Transactions
on Knowledge and Data Engineering, 2005. 17(6): p. 734-749.

2. Aggarwal, C.C., J. Wolf, K.L. Wu, and P.S. Yu. Horting Hatches an Egg: A New
Graph-Theoretic Approach to Collaborative Filtering. In Proceedings of the fifth
ACM SIGKDD international conference on Knowledge discovery and data mining.
1999. San Diego, California. ACM Press.

3. Avery, C., P. Resnick, and R. Zeckhauser, The Market for Evaluations. American
Economic Review, 1999. 89(3): p. 564-584.

4. Balabanovíc, M. and Y. Shoham, Fab: Content-Based, Collaborative
Recommendation. Communications of the ACM, 1997. 40(3): p. 66-72.

5. Basu, C., H. Hirsh, and W.W. Cohen. Recommendation as Classification: Using
Social and Content-Based Information in Recommendation. In Proceedings of the
Fifteenth National Conference on Artificial Intelligence. 1998. Madison, Wisconsin.
AAAI Press.

6. BBC News Online, "Sony admits using fake reviewer." June 4, 2001
http://news.bbc.co.uk/1/hi/entertainment/film/1368666.stm.

7. Billsus, D. and M.J. Pazzani. Learning collaborative information filters. In
Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI-
98). 1998. Menlo Park, CA. Morgan Kaufmann Publishers Inc.

8. Breese, J.S., D. Heckerman, and C. Kadie. Empirical analysis of predictive
algorithms for collaborative filtering. In Proceeding of the Fourteenth Conference on
Uncertainty in Artificial Intelligence (UAI). 1998. Madison, Wisconsin. Morgan
Kaufmann.

9 All three data sets are available from http://www.grouplens.org/

Collaborative Filtering Recommender Systems 33

9. Burke, R. Hybrid Web Recomender Systems, in The Adaptive Web: Methods and
Strategies of Web Personalization, P. Brusilovsky, A. Kobsa, and W. Nejdl, Editors.
2006, Springer-Verlag:London.

10. Canny, J. Collaborative filtering with privacy via factor analysis. In Proceedings of
the 25th annual international ACM SIGIR conference on Research and development
in information retrieval. 2002. Tampere, Finland. ACM Press.

11. Claypool, M., A. Gokhale, T. Miranda, P. Murnikov, D. Netes, and M. Sartin.
Combining Content-Based and Collaborative Filters in an Online Newspaper. In
Proceedings of the ACM SIGIR '99 Workshop on Recommender Systems:
Algorithms and Evaluation. 1999. Berkeley, California.

12. Condliff, M.K., D. Lewis, D. Madigan, and C. Posse. Bayesian Mixed-Effect Models
for Recommender Systems. In Proceedings of the SIGIR-99 Workshop on
Recommender Systems: Algorithms and Evaluation. 1999. Berkeley, California.

13. Cosley, D., S.K. Lam, I. Albert, J.A. Konstan, and J. Riedl. Is seeing believing?: how
recommender system interfaces affect users' opinions, in Proceedings of the SIGCHI
conference on Human factors in computing systems. 2003, ACM Press: Ft.
Lauderdale, Florida, USA. p. 585-592.

14. Dahlen, B.J., J.A. Konstan, J. Herlocker, and J.Riedl. Jump-starting movielens: User
benefits of starting a collaborative filtering system with "dead data". TR 98-017,
University of Minnesota.

15. Delgado, J. and N. Ishii. Memory-Based Weighted Majority Prediction for
Recommender Systems. In 1999 SIGIR Workshop on Recommender Systems. 1999.
University of California, Berkeley.

16. Dieberger, A. and M. Svensson, From Social Navigation to the Social Web, in The
Adaptive Web: Methods and Strategies of Web Personalization, P. Brusilovsky, A.
Kobsa, and W. Nejdl, Editors. 2006, Springer-Verlag:London.

17. Goldberg D, D. Nichols, B.M. Oki, and D. Terry. Using collaborative filtering to
weave an information tapestry. Communications of the ACM, 35(12), pp. 61–70.

18. Goldberg, K., T. Roeder, D. Gupta, and C. Perkins. Eigentaste: A Constant-Time
Collaborative Filtering Algorithm. Information Retrieval, 2001. 4(2): p. 133-151.

19. Good, N., J.B. Schafer, J.A Konstan, A. Borchers, B. Sarwar, J. Herlocker, and J.
Riedl. Combining collaborative filtering with personal agents for better
recommendations. In Proceedings of the Sixteenth National Conference on Artificial
Intelligence (AAAI-99). 1999. Orlando, Florida. AAAI Press.

20. Heckerman, D., D.M. Chickering, C. Meek, R. Rounthwaite, and C. Kadie.
Dependency Networks for Inference, Collaborative Filtering, and Data Visualization.
Journal of Machine Learning Research, 2001. 1: p. 49-75.

21. Herlocker, J., J.A. Konstan, L.G. Terveen, and J. Reidl, Evaluating Collaborative
Filtering Recommender Systems. ACM Transactions on Information Systems, 2004.
22(1): p. 5-53.

22. Herlocker, J.L., J.A. Konstan, A. Borchers, and J. Riedl. An algorithmic framework
for performing collaborative filtering. In Proceedings of the 22nd International
Conference on Research and Development in Information Retrieval (SIGIR '99).
1999. Berkeley, California. ACM Press.

23. Herlocker, J.L., J.A. Konstan, and J. Riedl. Explaining Collaborative Filtering
Recommendations. In Proceedings of the 2000 ACM conference on Computer
supported cooperative work. 2000. Philadelphia, Pennsylvania. ACM Press.

24. Hill, W., L. Stead, M. Rosenstein, and G. Furnas. Recommending and Evaluating
Choices in a Virtual Community of Use. In Proceedings of ACM CHI'95 Conference
on Human Factors in Computing Systems. 1995. Denver, Colorado. ACM Press.

34 J. Ben Schafer, Dan Frankowski, Jon Herlocker, and Shilad Sen

25. Hill, W.C., J.D. Hollan, D. Wroblewski, and T. McCandless. Edit Wear and Read
Wear. In Proceedings of the SIGCHI conference on Human factors in computing
systems. 1992. Monterey, California. ACM Press.

26. Hofmann, T., Latent semantic models for collaborative filtering. ACM Transactions
on Information Systems (TOIS), 2004. 22(1): p. 89-115.

27. Höök, K., D. Benyon, and A. Munro, Footprints in the snow, in Social Navigation of
Information Space, K. Höök, D. Benyon, and A. Munro, Editors. 2003, Springer-
Verlag: London.

28. Johnson, S.C., Hierarchical clustering schemes. Psychometrika, 1967. 32(3): p. 241-
254.

29. Kobsa, A. Privacy Enhanced Web Personalization, in The Adaptive Web: Methods
and Strategies of Web Personalization, P. Brusilovsky, A. Kobsa, and W. Nejdl,
Editors. 2006, Springer-Verlag:London.

30. Konstan, J.A., B. Miller, D. Maltz, J. Herlocker, L. Gordon, and J. Riedl.
GroupLens: Applying collaborative filtering to Usenet news. Communications of the
ACM, 40(3), pp. 77–87.

31. Lam, S.K. and J. Riedl, Shilling recommender systems for fun and profit, in
Proceedings of the 13th international conference on World Wide Web. 2004, ACM
Press: New York, NY, USA. p. 393-402.

32. Lin, W., Association Rule Mining for Collaborative Recommender Systems, Master's
Thesis, Worcester Polytechnic Institute, May 2000.

33. Linden, G., B. Smith, and J. York, Amazon.com recommendations: item-to-item
collaborative filtering. Internet Computing, IEEE, 2003. 7(1): p. 76-80.

34. Ludford, P.J., D. Cosley, D. Frankowski, and L. Terveen, Think different: increasing
online community participation using uniqueness and group dissimilarity in
Proceedings of the SIGCHI conference on Human factors in computing systems 2004
ACM Press: Vienna, Austria p. 631-638

35. MacQueen, J. Some methods for classi cation and analysis of multivariate
observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability. 1967.

36. McLaughlin, M. and J. Herlocker. A Collaborative Filtering Algorithm and
Evaluation Metric that Accurately Model the User Experience. In Proceedings of the
SIGIR Conference on Research and Development in Information Retrieval. 2004.

37. Maltz D, and E. Ehrlich. Pointing the way: Active collaborative filtering. In
Proceedings of ACM CHI'95 Conference on Human Factors in Computing Systems,
ACM, pp. 202–209.

38. Miller, B.N., J.A. Konstan, and J. Riedl, PocketLens: Toward a personal
recommender system. ACM Trans. Inf. Syst., 2004. 22(3): p. 437-476.

39. Mobasher, B. Data Mining for Web Personalization, in The Adaptive Web: Methods
and Strategies of Web Personalization, P. Brusilovsky, A. Kobsa, and W. Nejdl,
Editors. 2006, Springer-Verlag:London.

40. Oard, D.W. and J. Kim. Implicit Feedback for Recommender Systems. In
Proceedings of the AAAI Workshop on Recommender Systems. 1998. Madison,
Wisconsin.

41. O'Connor, M., D. Cosley, J. A. Konstan, and J. Riedl, PolyLens: A Recommender
System for Groups of Users. In Proceedings of ECSCW 2001. 2001. Bonn, Germany.

42. O'Mahoney, M.P., N. Hurley, N. Kushmerick, and G. Silvestre, Collaborative
recommendation: A robustness analysis. ACM Transactions on Internet Technology,
2003. 4(3).

43. Pazzani, M., and D. Billsus. Content-based Recommendation Systems, in The
Adaptive Web: Methods and Strategies of Web Personalization, P. Brusilovsky, A.
Kobsa, and W. Nejdl, Editors. 2006, Springer-Verlag:London.

Collaborative Filtering Recommender Systems 35

44. Popescul, A., L.H. Ungar, D.M. Pennock, and S. Lawrence Probabilistic Models for
Unified Collaborative and Content-Based Recommendation in Sparse-Data
Environments. 2001.

45. Ramakrishnan, N., B.J. Keller, and B.J. Mirza, Privacy Risks in Recommender
Systems, in IEEE Internet Computing. 2001. p. 54-62.

46. Resnick, P., N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. GroupLens: An open
architecture for collaborative filtering of netnews. In Proceedings of the 1994 ACM
conference on Computer supported cooperative work. 1994. Chapel Hill, North
Carolina. ACM Press.

47. Sarwar, B., G. Karypis, J.K. Konstan, and J. Riedl. Item-based collaborative filtering
recommendation algorithms. In Proceedings of the 10th international conference on
World Wide Web. 2001. Hong Kong. ACM Press.

48. Sarwar, B., G. Karypis, J.K. Konstan, and J. Riedl. Incremental SVD-Based
Algorithms for Highly Scaleable Recommender Systems. In Proceedings of the Fifth
International Conference on Computer and Information Technology (ICCIT 2002).
2002.

49. Sarwar, B.M., G. Karypis, J.K. Konstan, and J. Riedl. Application of Dimensionality
Reduction in Recommender System--A Case Study. In ACM WebKDD 2000 Web
Mining for E-Commerce Workshop. 2000. Boston, Massachusetts.

50. Schafer, J.B., J.A. Konstan, and J. Riedl, Meta-recommendation systems: user-
controlled integration of diverse recommendations in Proceedings of the eleventh
international conference on Information and knowledge management 2002 ACM
Press: McLean, Virginia, USA p. 43-51

51. Schein, A.I., A. Popescul, and L.H. Ungar. Generative Models for Cold-Start
Recommendations. In Proceedings of the Twenty-third Annual International ACM
SIGIR Workshop on Recommender Systems. 2001. New Orleans, Louisiana.

52. Shardanand, U. and P. Maes. Social Information Filtering: Algorithms for
Automating "Word of Mouth". 1995. New York. ACM.

53. Smyth, B. Case-based Recommendation, in The Adaptive Web: Methods and
Strategies of Web Personalization, P. Brusilovsky, A. Kobsa, and W. Nejdl, Editors.
2006, Springer-Verlag:London.

54. Swearingen, K. and R. Sinha. Beyond Algorithms, An HCI perspective on
Recommender Systems. In 2001 SIGIR Workshop on Recommender Systems. 2001.
New Orleans, LA.

55. Torres, R., S.M. McNee, M. Abel, J.A. Konstan, and J. Reidl. Enhancing digital
libraries with TechLens+ in Proceedings of the 4th ACM/IEEE-CS joint conference
on Digital libraries 2004 ACM Press: Tuscon, AZ, USA p. 228-236

56. Ungar, L.H. and D.P. Foster. Clustering Methods for Collaborative Filtering. In
Proceedings of the 1998 Workshop on Recommender Systems. 1998. Menlo Park,
California. AAAI Press.

57. Ziegler, C.-N., S.M. McNee, J.A. Konstan, and G. Lausen. Improving
Recommendation Lists Through Topic Diversification. In Proceedings of the
Fourteenth International World Wide Web Conference (WWW2005). 2005.

	The Matrix
	2.1 User Tasks
	2.3 Suitable domains for collaborative filtering
	5.2 Beyond Accuracy

